Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
g(f(x), y) → f(h(x, y))
h(x, y) → g(x, f(y))
Q is empty.
↳ QTRS
↳ Overlay + Local Confluence
Q restricted rewrite system:
The TRS R consists of the following rules:
g(f(x), y) → f(h(x, y))
h(x, y) → g(x, f(y))
Q is empty.
The TRS is overlay and locally confluent. By [15] we can switch to innermost.
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
g(f(x), y) → f(h(x, y))
h(x, y) → g(x, f(y))
The set Q consists of the following terms:
g(f(x0), x1)
h(x0, x1)
Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
H(x, y) → G(x, f(y))
G(f(x), y) → H(x, y)
The TRS R consists of the following rules:
g(f(x), y) → f(h(x, y))
h(x, y) → g(x, f(y))
The set Q consists of the following terms:
g(f(x0), x1)
h(x0, x1)
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
Q DP problem:
The TRS P consists of the following rules:
H(x, y) → G(x, f(y))
G(f(x), y) → H(x, y)
The TRS R consists of the following rules:
g(f(x), y) → f(h(x, y))
h(x, y) → g(x, f(y))
The set Q consists of the following terms:
g(f(x0), x1)
h(x0, x1)
We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
H(x, y) → G(x, f(y))
G(f(x), y) → H(x, y)
The TRS R consists of the following rules:
g(f(x), y) → f(h(x, y))
h(x, y) → g(x, f(y))
The set Q consists of the following terms:
g(f(x0), x1)
h(x0, x1)
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].
The following pairs can be oriented strictly and are deleted.
H(x, y) → G(x, f(y))
G(f(x), y) → H(x, y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
H(x1, x2) = H(x1)
G(x1, x2) = G(x1)
f(x1) = f(x1)
Lexicographic path order with status [19].
Precedence:
f1 > H1 > G1
Status:
G1: multiset
H1: multiset
f1: multiset
The following usable rules [14] were oriented:
none
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
g(f(x), y) → f(h(x, y))
h(x, y) → g(x, f(y))
The set Q consists of the following terms:
g(f(x0), x1)
h(x0, x1)
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.